# CSCI 2570 Introduction to Nanocomputing

**DNA** Computing

John E Savage



#### **DNA** (Deoxyribonucleic Acid)

- DNA is double-stranded helix of nucleotides, nitrogen-containing molecules.
- It carries genetic information of cell, encodes information for proteins & can self-replicate.
- Base elements form rungs on double helix.
  - They occur in pairs: A-T (adenine-thymine), C-G (cytosine-guanine).
- Sugars and phosphates form sides of helix.







- RNA synthesized from DNA.
  - Genetic information carried from DNA via RNA.
- RNA is a constituent of cells and viruses
- RNA consists of a long, single stranded chain of phosphate and ribose units of bases.
- Bases are adenine, guanine, cytosine and uracil.
- Determines protein synthesis and transmission of genetic information.
- RNA can also replicate.





- We assume that only Watson-Crick complementary strings combine.
- Form oligonucleotides (2 to 20 nucleotides).
- General framework for computing with DNA:
  - Mix oligonucleotides in solution.
  - Heat up solution.
  - Cool down slowly to allow structures to form
- We show that DNA is as powerful as a Turing machine!

# DNA is a Form of Nanotechnology



- Double helix diameter = 2.0 nanometers.
- Helical pitch (dist. between rungs) = .34 nms.
- Ten base pairs per helical turn.
- ~3 x 10<sup>9</sup> base pairs in human genome





- Prepare oligonucleotides ("program them")
- Prepare solution with multiple strings.
- Only complementary substrings q and <u>q</u> combine, e.g. q = CAG and <u>q</u> = GTC

1D & 2D crystalline structures self-assemble





- Directed graph G = (V,E)
- Determine if there is a path beginning at v<sub>in</sub> & ending at v<sub>out</sub> that enters each vertex once.



• This graph has HP from  $v_{in} = 0$  to  $v_{out} = 6$ 

#### Why is Hamiltonian Path Problem Hard?



- Intuitively, the number of paths that must be explored grows exponentially with the size of the graph.
- Finding a Hamiltonian path using a naïve search algorithm requires exponential search time.
- Formally, it has been shown that the Hamiltonian Problem is NP-hard.





- NP is a class of important languages.
  - A problem Q (a set of instances) is in NP if for every "Yes" instance of the problem there is a witness to membership in Q whose validity can be established in polynomial time in the instance size.
- The hardest problems in NP are NP-complete.
  - For a problem Q to be NP-complete, Q must be in NP and every problem in NP must be reducible to Q in polynomial time. (Each problem can be solved by translating it to Q.)
- If any NP-complete problem is in P (or EXP), so is every other NP-complete problem.





- Generate random paths through the graph.
- 2. Keep paths starting with v<sub>in</sub> & ending with v<sub>out</sub>
- 3. If the path has *n* vertices, keep only paths with *n* vertices.
- 4. Keep all paths that enter each vertex at least once.
- 5. If any paths remain, say "Yes". Otherwise say "No."





- Adleman<sup>†</sup> denotes vertex v by DNA string (or strand)
   p<sub>v</sub>q<sub>v</sub>. Strands must long enough that they are unique.
- Edge (u,v) is denoted by q'up', where p' and q' are the Watson-Crick complements of p and q
- Mix many copies of edge and vertex strands are put into solution along with copies of p'<sub>in</sub> and q'<sub>out</sub>.
- Adleman used 20-mers in his experiments, |pq| = 20.

†"Molecular Computation of Solutions To Combinatorial Problem," Science, 266: 1021-1024, (Nov. 11) 1994.

# **Generating Random Paths Through the Graph**



Edge strings q'up', combine with vertex strings p,q, to form duplexes, shown below.

- Each duplex has two sticky ends that can combine with another duplex or strand
- For starting and ending vertices p<sub>v</sub>q<sub>v</sub> and p<sub>w</sub>q<sub>w</sub> add p'<sub>v</sub> and q'<sub>w</sub> so that duplexes with sticky ends q<sub>v</sub> and p<sub>w</sub> are produced.





13

 Use PCR to amplify strings starting with vertex v<sub>0</sub> and ending with v<sub>6</sub>.

# Polymerase Chain Reaction (PCR) for String Amplification



| 5' | α  | β      | δ  | 3'  |
|----|----|--------|----|-----|
| 3' | α' | β'     | δ' | _5' |
|    |    | -<br>- | 1  |     |

Separate double Strand of DNA



Identify short Substrings



Denature and bind complements of short strings.

#### More on PCR



 Polymerase is large molecule that splits double stranded DNA and replicates from 5' to 3' starting it at double stranded section.



Hybridize  $\gamma'_1$  with one strand,  $\gamma_2$  with other

Shortened strand clipped at  $\gamma_1$ .

Shorten at  $\gamma'_2$  and replicate.





- Clip DNA subsequence at both ends
- Use polymerase to replicate between  $\gamma_1$  &  $\gamma_2$ .
- Replication doubles substring on every step.
- Volume of targeted substring grows exponentially.





 Use gel electropheris to find strings denoting paths of seven vertices.









Figure provided by Wikipedia





- Separates RNA, DNA and oligonucleotides.
- Nucleic acids are mixed with porous gel.
- Electric field moves charged molecules in gel.
- Distance a molecule moves is approximately proportional to inverse of logarithm of its size.
- Molecules can be seen through staining or other methods.
- Electrophoresis purifies molecules.





- Generate random paths through the graph.
- 2. Keep paths starting with v<sub>in</sub> & ending with v<sub>out</sub>
- If the path has n vertices, keep only paths with n vertices.
- 4. Keep all paths that enter each vertex at least once.
- 5. If any paths remain, say "Yes". Otherwise say "No."





- Separate double helix into single stands.
- Separate out strings containing v<sub>0</sub> by attaching one copy of p<sub>0</sub> that has a magnetic bead attached to it.
- Of those that remain, repeat with p<sub>i</sub> for i = 1, 2, ..., 6.
- The result are strings of length 7 that contain each of the vertices.
- Amplify the final set of strings using PCR. Use gel electrophoresis to determine if there are any solutions.

#### **Comments on Adleman's Method**



- Long strings {p<sub>v</sub>} needed to make unlikely that p<sub>v</sub> combines with a string other than p<sub>v</sub>.
  - Twenty base elements per string suffice
- Adleman's experiment required 7 days in lab.
  - String amplification, gel electrophoresis
  - Exponential volume of material needed to do tests.
- Method exploits parallelism
  - Nature has lots of parallelism.
  - Unfortunately reaction times are long (secs).

# **Extending DNA Computing to Satisfiability**



- SAT is defined by clauses:  $(x \lor y) \land (\bar{x} \lor \bar{y})$
- A set of clauses is "satisfied" if exist values for variables s.t. each clause has value "True".



 Create a double helix for each path (binary string) as in Adleman's problem.





- SAT is defined by clauses:  $(x \lor y) \land (\bar{x} \lor \bar{y})$
- Lipton<sup>†</sup> generates all "binary" strings in test tube  $t_0$ . Filter them according to clauses.
  - Extract strings with x = 1.
  - Extract strings with x = 0 and y = 1.
  - Combine the two sets in test tube  $t_1$ .
  - Repeat with tube  $t_1$  on second clause, i.e. on x' = 1, y' = 1.
- If any strings survive, it's a "Yes" instance of SAT.

†"DNA Solution of Hard Computational Problems," R.J. Lipton, Science, vol 268, p542545m 1995

# Lipton's General Method for Computing Satisfiability



Create many copies of all paths in G<sub>binary</sub> below.



- For first clause produce test tube containing paths satisfying all of its literals.
- Repeat with the second and subsequent clauses.
- If all clauses can be satisfied, it will be discovered with high probability.





DNA-based computing offers interesting possibilities

- Most likely to be useful for nano fabrication
  - However, high error rates may preclude its use